
AD-A259 418

S ELECTE

JAN 2 6 1993.2- 1

PRELIMINARY REPORT ON
EXTRACTING OBJECT-BASED DESIGN

FROM FUNCTIONALLY-ORIENTED
IMPLEMENTATIONS

SPC-92088-CMC

VERSION 01.00.06,

NOVEMBER 1992

"93-01250

/!~ l~~rll[llif~lllll~il[.9 3,

St-A per telecon, Dr. Kramer, DARPA/

SISTO, Arl., VA 22203

1-26-93 JK

PRELIMINARY REPORT ON
EXTRACTING OBJECT-BASED DESIGN

FROM FUNCTIONALLY-ORIENTED
IMPLEMENTATIONS D0 . ..

AOOQi•Aoa Peor

SPC-92088-CMC

VERSION 01.00.06, .

NOVEMBER 1992 I -j, '•., . .

Jeff Facemire D¶\t

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herndon. Virginia 22070

Copyright © 1992 Software Productivity Consortium Services Corporation, Herndon, Virginia. This material may be
reproduced by or for the U. S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (Oct.
1988). This material is based in part upon work sponsored by the Defense Advanced Research Projects Agency under Grant
#MDA972-92-J- 1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or
publicity pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium.
Inc. Permission to use, copy, modify, and distribute this material for any purpose and without fee is hereby granted, provided
that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in
supporting documentation. SOFTWARE PRODUCTHVITY CONSORTIUM. INC. AND SOFTWARE PRODUCTIVITY
CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE
SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER. AND THIS
MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

CDOC is a trademark of Software Blacksmiths, Inc.

CONTENTS

ACKNOWLEDGEMENTS .. vii

EXECUTIVE SUMMARY ... ix

1. INTRODUCTION ... 1

1.1 P urpose .. 1

1.2 Intended A udience ... 1

1.3 Motivation and Goals Behind the Method 1

1.4 Typographic Conventions ... 3

2. THE CONCEPTUAL METHOD ... 5

2.1 M ethod Overview .. 5

2.1.1 Perform Initial A nalysis .. 6

2.1.2 Define Candidate Objects .. 7

2.1.3 Integrate O bjects .. 7

2.2 Initial A nalysis .. 7

2.2.1 Extracting Context and Dependence 8

2.2.2 Identifying Library Components ... 9

2.3 Defining Candidate Objects ... 9

2.3.1 Forming the Initial Candidate Object 10

2 3 2 Adding Components to Objects ... 11

2.3.3 Combining Components with Components 12

2.3.4 Forming One-Component Objects 14

2.3.5 Finding Hidden Com-,one•'ts ... 14

2.3.6 Domain Expert Analysis 1 .. 15

m ~I

Contents

2.4 Integrating O bjects ... 16

2.4.1 Com ponent Integration .. 17

2.4.1.1 Integrating the Component Information 17

2.4.1.2 Making Hidden Components into Interface Components 18

2.4.2 O bject Integration ... 18

2.4.2.1 Integrating the Candidate Object Information 19

2.4.2.2 Reexamining One-Component Objects for Hidden Components 21

2.4.3 Domain Expert Analysis 2 .. 21

2.5 U sing the Results .. 22

3. METHOD VALIDATION ... 23

4. METHOD SUPPORT .. 25

5. CONCLUSIONS .. 27

5.1 Final Conclusions .. 27

5.2 Future W ork .. 27

GLOSSARY .. 29

REFERENCES .. 33

BIBLIOGRAPHY .. 35

iv

FIGURES

Figure 1. M ethod Information Flow .. 6

Figure 2. Initial Analysis Activity ... 8

Figure 3. Context and Dependency of a Component 9

Figure 4. Defining Candidate Objects Activity .. 10

Figure 5. Adding Components to Objects .. 12

Figure 6. Combining Components with Components 13

Figure 7. Finding Hidden Components .. 15

Figure 8. Integrating Objects Activity ... 17

Figure 9. Component Integration Example .. 18

Figures

This page intentionally left blank.

vi

ACKNOWLEDGEMENTS

This report documents a method that was developed by Thomas Pole (formerly of the Software
Productivity Consortium, but currently with EVB Software, Inc.) in conjunction with the SYSCON
pilot project. As such, this report utilized the following as the basis for the report:

"* A prototype tool that implements the techniques of this method.

"* A draft external paper entitled: "Transitioning to the Object Oriented Software Development
Paradigm Using C2C÷+: Recovering the Implicit Reusable Objects from a Non-Object
Oriented Implementation" written by Thomas Pole.

"• Conversations between the author, Thomas Pole, and Tom Barr (SYSCON Corporation).

I also wish to thank Tom Barr (SYSCON), Lisa Finneran, Fred Hills, Jim O*Connor, and Thomas Pole
for being reviewers of this paper. Their feedback was essential.

"vii

Acknowledgements

This page intentionally left blank.

"viii

EXECUTIVE SUMMARY

This report describes preliminary work on a method for extracting object-based design from
functionally-oriented implementations. This method is applied to existing functionally-oriented code
to produce a set of objects that are behaviorally-equivalent to the original implementation. Each of
these objects represents a cohesive grouping of related functions and the data that the functions
manipulate.

The purpose of this report is to sufficiently explain this method so that it serves as the basis for future
work. This method is preliminary in nature, as it has only been validated on a single project. It was
developed and practiced on a pilot project between the Consortium and the SYSCON Corporation.
As such, the intent of the report is to help the audience to "understand- the method and to serve as
the basis for further validation/exploration. This report is not intended to instruct you on how to apply
the method to new projects. The primary audience is technologists and methodologists who are inter-
ested in exploring methods for transforming functionally-oriented implementations into reusable
objects or object-based implementations.

This report provides a systematic method for extracting an object-based design, implicit within the
functionally-oriented implementation, that exhibits the benefits of encapsulation, information hiding.
and problem space orientation. This method showsyou how to analyze the organization of the existing
implementation and to form cohesive objects with well-defined interfaces. The objects identified by
this method partition the original functions and data into cohesive, logically-related groups. The re-
sulting design is considered object-based, instead of object-oriented, because it focuses on encapsula-
tion and informati "n hiding as opposed to the other object-oriented characteristics such as inheritance
and polymorphism.

ix

Executive Summary

This page intentionally left blank.

1. INTRODUCTION

1.1 PURPOSE

This report describes preliminary work on a method for extracting object-based design from
functionally-orienied implementations. This method is applied to existing functionally-oriented code
to identify a set of o]jects that are behaviorally-equivalent to the original implementation. Eacit of
these objects represents a cohesivc grouping of related functions and the data that the functions
manipulate.

The purpose of this report is to sufficiently explain this method so that it serves as the basis for future
work. This method is preliminary in nature, as it has only been validated on a single project. It was
developed and pricticed on a pilot project between the Consortium and the SYSCON Corporation.
As such, the intent of the report is to help the audience to "understand" the method and to serve as
the basis for further validation/exploration. This report is not intended to instruct you on how .c apply
the method to new projects.

1.2 INTENDED AUDIENCE

The intent of this report is to document the method practiced on the SYSCON pilot project and to
serve as a basis for further exploration. Therefore, the primary audience is technologists and me-
thodologists wh'- are interested in exploring methods for transforming functionally-oriented
irnrlementations into reusable objects or object-base,; implementations.

However, line engineers may also find this method. in its current form, useful for extracting
object-based design infor mation from existing functionally-oriented implementations. The major ca-
veat to line engineers. though, is that the materiý ' has only been validated on the SYSCON pilot proj-
ect. As such, the Consortium cannot predict a priori that this method (without some form of
customizati .,,) will yield the same results as those found by SYSCON. To be fully functional to line
engineers, this method still needs to be applied on additional pilot projects to ensure maturity of the
method and to better understand any needed customizations.

To be applied effectively, this method requires domain expc ts to be involved in examining the
method's intermediate and final results. An intimate knowledge of the implementation's design and
architecture is necessary to accurately assess whether the resulting objects are what you want. This
method also requires someone to apply it either i,anually or through some automated means. Much
of this method would benefit from using automation; however, the method can be applied manually.

1.3 MOTIVATION AND GOALS BEHIND THE METHOD

Even though the title of this report uses the telin "extracting." this method shares much of its
motivation and goals with that of reengineering: namely, the desire to transform existing code into

1. Introduction

better code or to improve its understanding. There are a number of reasons why one might want to
reengineer existing systems. Some of these reasons include:

"* A requirement to support a system over a long period of time. Reengineering could be used
to make the existing code more maintainable.

"* Systems that are poorly documented. Reengineering could be used to extract valuable
implementation interactions that are not immediately obvious from looking at large amounts
of code.

"* A desire on the part of a company to develop many similar systems. Reengineering existing
code could provide a source of reusable components.

Each of these reasons can benefit from the use of some method for extracting information from
existing code that is not currently (or readily) available.

This method focuses on functionally-oriented implementations that are systems where the
"boundaries of modules have been defined in a way that depends on the decomposition, which in turn
depends on the functional characteristics of the specific application." (Graham 1991) Functionally-
oriented implementations are based on an organization of functional modules that are defined as sub-
sets of a implementation's functionality, identifying each module by a set of high-level functional
abstractions representing that module's subset of the system functionality. The data, and therefore
the state of the system. are not explicitly included in the module (i.e., it is not based on information
hiding).

The primary problems inherent in functionally-oriented implementations is that maintenance is
difficult and reusing modules is inhibited. Maintenance is usually the major portion of the lifecycle
for any given system. As such. enhancements and fixes that take place throughout the maintenance
lifecycle often introduce more work than they save because the code is hard to understand, implica-
tions of change are not clear, and changes are not isolated to a particular part of the system. Reuse
of modules is usually inhibited because of the lack of minimalized dependencies between functional
modules.

An object-based orientation to system organization alleviates these problems. while also addressing
the reasons for performing code reengineering, by offering the following:

" Encapsulation. Encapsulation is a technique of isolating a system function within a module
and providing a precise specification for the module (IEEE 1983). Encapsulation groups re-
lated functions and data together so that they can be treated and thought of as a unit.
Encapsulation is very closely related to information hiding.

" Information Hiding. Information hiding is a technique of encapsulating software design
decisions in modules in such a way that the module's interfaces reveal as little as possible about
the module's inner workings; thus, each module is a "black box" to the other modules in the
system. The discipline of information hiding forbids use of information about a module that
is not in the module's interface specification (IEEE 1983).

"* Problem Space Orientation. Problem space orientation organizes system objects around
real-world objects such as external environment entities, hardware components, and user

2

1. Introductio3n

operations. This orientation a!lows the user to better understand the relationship between
modules of an implementation and the real-world functions addressed by the modules.

Encapsulation, information hiding. and taking a problem space orientation provide the basis for
creating software that is more reusable, extensible, and maintainable as follows:

"Enhanced Reuse Potential. An object-based orientation groups data and functionality
together that cohesively make sense. Proper balance of encapsulation and information hiding
will result in objects that are thought of as a unit and contain well-defined interfaces for under-
standing the exact nature for interacting with the object. A problem space orientation in-
creases the chances of (and the understanding of) how the software can be reused in future
systems. This problem space orientation makes it easier to map from future requirements to
existing implementations that address the requirements.

"Increased Extensibility. An object-based orientation establishes objects that are cohesive,
with respect to function and data. with well-defined interfaces for defining the objects. The
cohesiveness and the strict interfaces make objects easier to understand which, in turn, makes
them easier to change. This ease of understanding is also enhanced by the problem space
orientation since the mapping from the problem space to the implementation is easier to
make. Proper encapsulation and information hiding mean that changes to particular objects
will not adversely affect other objects as long as the changes are confined within the particular
object. Only when changes affect an object's interface is it necessary to investigate the changes'
impact on the rest of the system.

"Increased Maintainability. An object-based orientation increases maintainability by
establishing objects with well-defined interfaces for easier localization of change. As with ex-
tensibility, the objects are also easier to understand which is vital when trying to maintain a
system long after its original development phase. Taking a problem space orientation also
makes it easier to map future enhancements to existing objects that are effected.

This report provides a systematic method for extracting an object-based design, implicit within the
functionally-oriented implementation, that exhibits the benefits of encapsulation. information hiding.
and problem space orientation. This method shows you how to analyze the organization of the existing
implementation and to form cohesive objects with well-defined interfaces. The objects identified by
this method partition the original functions and data into cohesive, logically-related groups (i.e., func-
tions that tend to manipulate the same data or call the same functions would be good candidates for
being placed in the same object). The resulting design is considered object-based. instead of object-
oriented, because it focuses on encapsulation and information hiding as opposed to the other
object-oriented characteristics such as inheritance and polymorphism.

1.4 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Words, expressions, abbreviations, and acronyms found in
the Glossary, and publication titlcs.

3

1. Introduction

Boldfaced serif font Section headings and emphasis.

Boldfaced sans serif font Within commands, commands and keywords to be used
literally.

Typewriter font Syntax of code or software responses.

"4

2. THE CONCEPTUAL METHOD

This section describes the method for extracting object-based design information from
functionally-oriented implementations. It initially presents an overview of the method that will
introduce most of the method-specific terminology used later in the section. The method's individual
activities follow the initial overview.

2.1 METHOD OVERVIEW

As the title suggests, this method extracts an object-based design from a functionally-oriented
implementation. A functionally-oriented implementation is made up of data elements (i.e., variables.
records) and functions (i.e., procedures, functions), collectively referred to as components. This meth-
od uses interactions between components as the basis for forming an object-based design that is a
behaviorally-equivalent representation of the original functionally-oriented implementation.

The object-based design is derived from the functionally-oriented implementation by analyzing the
interactions between components to determine if sufficient commonality eyists to warrant forming an
object to contain the components. Commonality in this method is defined as the common calls or data
accesses between two components. In other words, if two components primarily call the same func-
tions or access the same data. then they are likely to belong in the same object. This method does not
alter the original functionally-oriented implementation, but instead produces a description of a set
of suggested objects and a structure (i.e., interactions) between those objects that are behaviorally-
equivalent to the original implementation. Each object contains a set of components, some of which
are visible in the interface of the object and others that are hidden within the object. These objects
exhibit high cohesiveness between separate functions and between data and the functions that access
the data. The basic premise of this method is that the functions (i.e., components) of the functionally-
oriented implementation which operate on a given data structure define a reasonable object in an ob-
ject-based orientation. This object-based design merely suggests objects since any subsequent use or
implementation of the objects is open to further domain expert analysis and reso!ution of any
implementation issues.

This method, however, will not perform reengineering miracles. The basic rule of Garbage-In,
Garbage-Out applies. If the original analyzed code is made up of poorly designed functions and data
stores, then this method will attempt to form objects based on the commonalities of this poor use.
Therefore, it is a basic assumption of this method that some care has been given in the original func-
tionally-oriented implementation to create meaningful functions and to carefully control accesses to
information.

5

2. The Conceptual Method

This method is made up of three primary activities: Perform initial Analysis, Define Candidate
Objects, and Integrate Objects (see Figure 1). The primary input to this method is the existing func-
tionally-oriented implementation. Secondary inputs to this method, in the form of data or expertise,
help to control the formation of objects. The output from this method are suggested objects. These
objects can, for example, form the basis of a reuse library or can be implemented in an object-oriented
programming language. As shown in Figure 1, this output is partitioned into two outputs: Uninte-
grated Objects and Integrated Objects. Most implementations contain some partitioning that was im-
portant to the original designers (i.e., functional subsystems) or to management (i.e., partitioning
work assignments). These partitionings are referred to in this method as subsystems. When forming
the Unintegrated Objects output, this method retains this subsystem organization during the forma-
tion of objects. The formation of the Integrated Objects output removes these subsystem boundaries
by integrating all of the Unintegrated Objects. The result is a system view of the objects. These two
object-based views of the functionally-oriented implementation are presented so that a choice can be
made between the two views since there may be project-specific reasons that the existing structure
(i.e., the subsystem boundaries) must be retained. There is no requirement in this method that this
final activity need be performed. However, nothing is lost since both integrated and non-integrated
object sets are produced. If you know that you want (or your organization wants) to retain the
subsystem organization, then the Integrate Objects activity can be viewed as optional.

Library Domain
Component List Experts

Static Code

Existing[Perform Information
Codeg--"> initial ----- r -

Analysis I ,Object-Based

Define UnintegratedI

, Candidate Ob'ects 1 Unintegrated
Ob~jects 2 1Objects

Key:
ControlI

Integrate I Integrated

Input - Obects 3 Objects

Figure 1. Method Information Flow

Tools and automation can be used for performing the activities of this method. All aspects of this
method can be applied manually; however, this may prove to be very tedious. Static analysis tools can
be used to extract the context and dependency information from existing code. Likewise, the tests and
subactivities of the latter two activities can be automated to assist the user in performing this method.
The application of automation to this method is discussed further in Section 4.

2.1.1 PERFoRM ImrrwL. ANAtisjS

The Perform Initial Analysis activity is the initial step in this method. It is an analysis step that obtains
the information needed for forming objects. The existing functionally-oriented implementation is the
input to this step. The primary action taking place in this activity is the creation of context and depen-
dency sets for each component. These sets are determined by analyzing for each function the data ac-
cessed and the functions called. A component is said to be in the context of a given component if it

6

2. The Conceptual Method

calls or accesses the given component. A component is said to be in the dependency set of a given
component if the given component calls or accesses it. Also included in this activity is an enumeration
of the library components of the system. Library components are functions within the functionally-ori-
ented implementation that are at too low of a level (e.g., a programming language's run-time library
components) to warrant being included in the formation of objects. Library components are identified
as such to prevent them from becoming the basis for the formation of objects.

2.1.2 DEFMNE CANDIDATE OBJECTs

The second step in this method is the Define Candidate Objects activity. This activity uses the
information gathered in the previous step to begin the formation of candidate objects. Objects formed
by this method are called candidate objects because all objects are subject to review and approval by
domain experts. This activity focuses on one subsystem at a time. A single subsystem is evaluated with
no knowledge of the other subsystems in the implementation. Domain experts or persons knowledge-
able in the functionally-oriented implementation will be required to identify these subsystem
boundaries.

Initially, all subsystem components are unallocatedwhich means that they are not yet assigncd to any
particular candidate object. Candidate objects are formed by assigning the unallocated components
to existing candidate objects. Candidate objects are basically formed whenever components share suf-
ficient commonality in their dependency sets. The candidate objects possess interface components and
hidden components. The interface components reveal only those aspects of the object that need to be
known outside the object. The hidden components include any data that the interface components
manipulate along with any internally hidden components that do not need to be exported.

This activity is repeated until all components are allocated to candidate objects. At this point, domain
experts should review the candidate objects to determine if they reflect the cohesiveness expected for
the given system. Domain expert reviews are, by their nature, very subjective processes which rely en-
tirely upon the intuitive sense of the domain expert. This activity results in an object-based design that
retains the subsystem boundaries present in the original functionally-oriented implementation.

2.1.3 INTEGRATE OBJEcTS

The Integrate Objects activity is the final step in this method. It takes the unintegrated components
from the previous activity as input and integrates all of the candidate objects from the individual subsys-
tems into a single set of candidate objects. Essentially, this activity removes all of the subsystem bound-
aries and takes an overall system view to the formation of candidate objects. Sometimes separate
candidate objects are merged into single objects. Sometimes candidate objects are split into separate
pieces based on new information available from performing the integration. Splitting candidate ob-
jects is based on the fact that some components can access other subsystems components. The integra-
tion of such information can shed new light on how candidate objects are formed and, as such, can
cause some previously formed candidate objects to be broken apart. At this point, domain experts
should once again review the candidate objects to determine if they reflect the cohesiveness expected
for the given system. This activity results in an object-based design that removes the subsystem
boundaries present in the original functionally-oriented implementation.

2.2 INITIAL ANALYSIS

The Initial Analysis activity extracts the information needed from the functionally-oriented
implementation to form objects. This activity, illustrated in Figure 2, initially creates the context and

7

2. The Conceptual Method

dependency structures which reflect the static interactions in the code, and then identifies the library
components of the implementation.

Library
Component List

netContext and

Code Context and Dependency Sets
Lependence 11] ,

C n Identifying
Components Library 12- Unallocated

Key: Components Components
Control

Input A*tiviU Output

Figure 2. Initial Analysis Activity

2.2.1 EXTRACTING CONTEXT AND DEPENDENCE

A functionally-oriented implementation is made up of components such as functions, procedures, and
data acted upon by these other components. Interactions between these components can take the form
of calls and accesses. Static code information (i.e., information regarding the code's structure; not its
run-time execution) is the basis for the formation of candidate objects in this method. This static code
information needs to contain the following information for each component, C, in the
functionally-oriented implementation:

" The set of all components called or accessed by C. The set can include functional components
anddata components. Typical examples of functional components include functions and proce-
dures. Typical examples of data components include variables, records, and arrays. If C is a
data component, then this set will be empty since data components do not call other
components.

"* A set of all functional components that call or access C.

This static code information is organized into two complementary structures: context and dependency
sets. Each component in the functionally-oriented implementation has a context and dependency set,
either of which may be empty.

The context of a component, denoted as a function c-set(component) which returns the context set,
is the set of all components that call or access it. Both functional components and data components
can have a context; the only exception would be the implementation's main program. In Figure 3, the
context of component X is the set of components A, B, and C. The dependency set of a given compo-
nent, denoted as a function d-set(component) which returns the dependency set, is the set of all func-
tions or data components that it calls or accesses. Only functional components can actually have a
dependency set since they are the only components that can call other components. Data components
do not make calls to other components. As shown in Figure 3, the dependency of component X is the
set of components Y and Z. The context and dependency functions are complementary in that if X
E c-set(A), then A E d-set(X). These sets are established for each component in the
functionally-oriented implementation.

8

2. The Conceptual Method

Component }Compon
A pContext:: J c-set(X) = I{A. B, C}

Y z

Figure 3. Context and Dependency of a Component

2.2.2 IDENTIFYING LIBRARY COMPONENTS

The context and dependency sets, formed in Section 2.2.1, are the basis for forming objects in later
activities. The object formation activities will analyze the context and dependency sets looking for suf-
ficient commonality to form candidate objects. However, some functions are too fundamental or per-
vasive to include in the formation of objects. For example, if many of the components in a subsystem
performed some type of printing, then these components would share the commonality of calling
printing functions. It would likely be an error to group these components together simply because they
all performed printing. Therefore, the printing functions can be identified as library components so
that the formation of objects can focus on the more pertinent components in the implementation. All
components designated as library components should be removed from the set of unallocated compo-
nents for a given subsystem. In this manner, the library components will not be considered during the
object formation activities.

2.3 DEFINING CANDIDATE OBJECTS

The Defining Candidate Objects activity uses the information obtained from the Initial Analysis
activity to begin the process of forming objects. This activity is applied on a subsystem-by-subsystem
basis. The premise here is that the subsystems were established by a project to reflect some project-
specific or functional organization of the implementation. Therefore, this activity is performed on
each subsystem separately in the overall implementation.

This activity, illustrated in Figure 4, allocates components to candidate objects. When this activity is
initiated, all components are unallocated and no candidate objects are formed. Since components are
only allocated to known candidate objects, an initial candidate object is formed. Unallocated compo-
nents are then one-by-one either added to existing objects, combined with other components to form
new objects, or are formed into new one-component objects. in that order. With the formation of each
new candidate object, the base of known candidate objects is increased. This process iterates until all
components have been allocated to candidate objects. Final analyses for finding hidden components
and for review by a domain expert complete this activity. The candidate objects formed during this
activity will contain a set of interface components, a potentially empty set of hidden components, and

2. The Conceptual Method

a dependency set for the object. Once this activity is completed, the candidate objects are ready for
integration (described in Section 2.4).

Context and
Deperndency Sets Domain

Unallocated OExperts
Components Candidate

Initial

Candidate
Object 21 Adding

omponents
to Objects 22

Objct 24 aCandidat

Ordered Combining
H d O esbtet

Unallocated Components
Objects

Components with
Components 23

Forming

SOne-ComponentCad atObjects 24Cadat
Finding Hidden _Objeet Unintegrated

Key: Components 251 objects

Control]]Dornmai

JvExpert L
Input --V.Ec'ivý o-- Op11 Analysis 26

Figure 4. Defining Candidate Objects Activity

2.3.1 FORMING THE INITIAL CANDIDATE OBJECT

The subactivities of the Define Candidate Objects activity attempt to assign unallocated components
to known candidate objects, which presumes that an initial candidate object is available. Therefore,
the initial step in defining candidate objects is the formation of an initial candidate object for the
subsystem.

To actually form the initial candidate object, perform the following steps:

1. Order all unallocated components of a subsystem by the size of their dependency sets (from
largest to smallest). This ordering reflects the relative complexity of the subsystem's unallo-
cated components and assumes a component calling many other functions or accessing lots of
data is more complex than another component that calls fewer functions or accesses less data.
Since it is used by the other subactivities of this activity, this ordered unallocated component
set should be retained.

2. Choose the most complex component from the ordered unallocated component set. If there
is a tie for the most complex unallocated component, then simply pick one using any arbitrary
method (e.g., alphabetical ordering).

3. Form an initial candidate object with the selected component as its interface component.

4. Remove the component selected for the initial candidate object from the set of unallocated
components since it is now assigned to a candidate object.

10

2. The Conceptual Method

5. Set the initial candidate object's dependency set to the dependency set of the selected
component.

2.3.2 ADDING COMPONENTS TO OBJECTS

This subactivity adds unallocated components to the interface of existing candidate objects (which the
first time through is simply the initial candidate object). This subactivity tests the commonality be-
tween the dependency set of each unallocated component and the dependency sets of the candidate
objects. If sufficient commonality exists, then the component is added to the candidate object's
interface and the dependency sets are merged.

This subactivity is made up of two tests. These tests are applied to the most complex component (i.e.,
the one with the largest d-set) in the ordered set of unallocated components, and is attempted for each
existing candidate object until successful. It is possible, however, that all attempts at assigning the un-
allocated component to the existing candidate objects will fail due to no commonality. In this situation,
simply move on to the Combining Components with Components subactivity in Section 2.3.3.

Add unallocated component, U, to the interface of a candidate object, CO, if one of the following tests
succeed (apply tests in order):

1. d-set(U) C d-set(CO)

This test states that if the dependency set of the unallocated component is a subset of the
dependency set of the candidate object, then the test succeeds.

2. Id-set(CO) n d-set(U)j -Ž (min (Id.set(CO)j, Id-set(U)l) * threshold)

This test says to initially obtain the intersection of the dependency sets of the candidate object
and the unallocated component. If the size of this intersection is greater than or equal to the
size of the shorter of the two dependency sets multiplied by some thresholding factor. then
the test succeeds. In other words, a component should be added to a candidate object if the
commonality of the two dependency sets (i.e., the intersection) is greater than or equal to
some percentage of the shorter of the two dependency sets (i.e., the min times the threshold).
The threshold is present to tune this test for forming objects that are satisfactory to the domain
experts. The larger the threshold, the more an exact match is needed to add the component
to the candidate object (i.e.. a threshold of 1.0 would require that the intersection be equal to
the d-sets of either the candidate object or the unallocated component for success). The lower
the threshold, the more easily components are added to the candidate objects. The threshold
used in this test is independent of any other thresholds used in other activities.

Figure 5 (on page 12) illustrates these tests being applied to a candidate object, CO. and an
unallocated component, U. In this example, the first test fails because there is not a subset between
the dependency sets of the component and the candidate object. However, the second test allows the
component to be added to the candidate object because sufficient commonality is present.

If the tests of this subactivity indicate that the unallocated component should be added to a candidate
object, perform the following steps:

1. Add the selected component to the interface of the candidate object's interface component
set.

11

2. The Conceptual Method

[candidate object: CO __• cmoet

coomponent: C1

component: D

unallocated
component: U component: E

component: F

Dependency Sets:
d-set(CO) = {A. B. C. E, F}
d-set(U) = {A. C, D, E}
d-set(CO) r) d-set(U) = {A. C. E}

Sizes:
Id-set(CO) I = 5

Id-set(U) l = 4
Id-set(CO) n d-set(U)= 3

Therefore. if the threshold is .65, then:

I d-set(CO) n d-set(U) I a (min (I d-set(CO) 1. 1 d-set(U) 1) * threshold)
3 a (min (5.4) * .65)
3 > (4 * .65) = (2.6)

True

Figure 5. Adding Components to Objects

2. Remove the component from the set of unallocated components since it is now assigned to a
candidate object.

3. The dependency set for the candidate object remains unchanged unless the candidate object
only contained a single component in its interface. In this special situation, the candidate ob-
ject's dependency set is equal to the intersection of the dependency sets of the candidate object
and the added component (i.e., d-set(CO)=(d-set(CO)n d-set(U)).

2.3.3 COMBINING COMPONENTS WITH COMPONENTS

This subactivity forms new candidate objects from two currently unallocated components that have
commonality in their dependency sets. This subactivity tests the commonality between the dependen-
cy sets of unallocated component pairs. If sufficient commonality exists, then a new candidate object
is formed with the two components as interface components and the dependency set of the new candi-
date object reflecting the commonality of the dependency sets of the two components. Whenever a
new candidate object is formed using this subactivity, restart the Adding Components to Objects activ-
ity in Section 2.3.2. The method is restarted here since there is now an additional candidate object into
which to add unallocated components.

This subactivity is made up of two tests. These tests are applied to the most complex component (i.e.,
the one with the largest d-set) in the ordered set of unallocated components. This most complex com-

ponent is paired with each successively less complex component in the ordered set of unallocated

12

2. The Conceptual Method

components. If for some reason this subactivity does not successfully find a suitable match for the most
complex component, move on to the Forming One-Component Objects activity in Section 2.3.4.

Form a new candidate object encompassing the unallocated components, U1 and U2, if one of the
following tests succeed (apply them in order):

1. d-set(Ul) C d-set(U2) V d-set(U2) C d-set(U1)

This test states that if the dependency set of either unallocated component is a subset of the
other unallocated component's dependency set, then the test succeeds.

2. Id-set(U1) fn d-set(U2)I > (id-set(Ul)I * threshold) v
Id-set(U1) n d-set(U2)1 ý (Id-set(U2)1 * threshold)

This test says to initially obtain the intersection of the dependency sets of the two unallocated
components. If the size of this intersection is greater than the size of either of the individual
dependency sets multiplied by some thresholding factor, then the test succeeds. In other
words, two components should form a candidate object if the commonality of their dependen-
cy sets (i.e., the intersection) is greater than or equal to some percentage of one of the two
dependency sets individually. Thresholding works the same here as in Section 2.3.2, except
that different thresholding values can be used.

Figure 6 illustrates these tests being applied to two unallocated components, U1 and U2. In this
example, the first test succeeds; therefore, the second test is unnecessary.

component: D

Sunallocated

component: U2 component: B

Dependency Sets:
d-set(Ul) = {A. B. C. E)
d-set(U2) = {A, C, E}

Therefore:
d-set(Ul) C d-set(U2) V d-set(U2) C d-set(U1)
{A.BC,E}C{A.C,E} v {A.C,E}C{A.B,QCE}
(False v True) = True

Figure 6. Combining Components with Components

If the tests of this subactivity indicate that two unallocated components should form a new candidate
object, perform the following steps:

1. Add the two components to the interface of the new candidate object's interface component
set.

13

2. The Conceptual Method

2. Remove both components from the set of unallocated components since they are now assigned
to a candidate object.

3. The dependency set for the candidate object depends upon which test above succeeded. If
Test 1 succeeded, then the new object's dependency set becomes the Iarger of the dep'..ndency
sets of the two components, i.e., d-set(CO)=d-set(U1), if Id-set(U1)i > Id-set(U2)I, else
d-set(CO) = d-set(U2). If Test 2 succeeded, the new object's dependency set becomes the inter-
section of the dependency sets of the two components, i.e., d-set(CO)=d-set(U1)fl
d-set(U2).

2.3.4 FORMING ONE-COMPONENT OBJECTS

This subactivity forms new candidate objects when the previous subactivities have failed to assign the
most complex unallocated component to an existing candidate object. Whenever a new candidate ob-
ject is formed using this subactivity, restart the Adding Components to Objects activityin Section 2.3.2.
The method is restarted here since there is now an additional candidate object into which to add
unallocated components.

To form this one-component object, perform the following steps:

1. Form a candidate object with the unallocated component as its interface component.

2. Remove the component from the ordered set of unallocated components since it is now
assigned to a candidate object.

3. The dependency set for the candidate object is set to the dependency set of the interface
component, i.e., d-set(CO) = d-set(interface component).

2.3.5 FINDING HIDDEN COMPONENTS

After all unallocated components have been assigned to candidate objects, this subactivity determirfrs
if any of the interface components of the candidate objects can become hidden components. Hidden
components are components of a candidate object that are not part of its interface and are only called
or accessed by components within that candidate object. Many of the components contained in the
one-component objects will likely become hidden components of another candidate object.

This subactivity consists of a single test that is applied to every interface component of every candidate
object. For each component (referred to as C) considered in conjunction with each known candidate
object (referred to as CO), the following test is applied:

c-set(C) C ((set of all interface components of a given candidate object, CO) U
(set of all hidden components of a given candidate object, CO))

The basic premise of this test is that if a given component (whether it is currently within
one-component object or within a multi-component object) is only accessed by the components (both
interface and hidden) of a single candidate object, then the given component can become a hi, --. n
component of that candidate object. The component is removed from the interface of its original can-
didate object and made into a hidden component of the candidate object with which the test succeed-
ed. If a candidate object becomes devoid of any components because of this subactivity, then the ermpty

14

2 The Conceptua! Metod

candidate object is discarded since it is no longer needed. This subactivit, is repetitive since placing
any component into a candidate object (as a hidden component) increases th. number of components
contained in that candidate object, thus. increasing the chances for other components to become hid-
den components of this same candidate object. This subactivity repeats ur.nil there are no further
changes in hidden components.

Figure 7 illustrates an example of this subactivity being applied to two candidate objects, C01 and
C02. The candidate object, COa, contains two interface components, CI and C2, and two hidden com-
pon-nts, HI and H2. The candidate object, C02. is a one-component object containing a single inter-
face component, C3. This test succeeds since the context set of C3 is a subset of the set of components
cortained in COL. C3 qualifies to become a hidden component of COL. When this occurs, C02 will
become empty and can be discarded. The repetitive nature of this subactivity becomes evident after
C3 has been added to C01 as a hidden component. The component C4 of the one-component object
C03 will now also qualify as a hidden component of CO1 since its only context component is C3, which
is now a hidden component of COL.

candidate object: CO I candidate object: C02

component: CI component: C3 _.

o ncomponent: C2t)

compoet 1

component: 112 candidate object: C03

S~(c-omponent: C4...

From the above diagrams:
c-set(C3) = {4C. H21
cnmponent set for COl = {C1. C2. I1. H2)

Therefore:
c-set(C) C ((set of all interface components of a given candidate object. CO) U

(.et of all hidden components of a given candidate object. CO))
{CI. H2) C ({C1. ,J2} u {H1. H21)
True

Figure 7. Finding Hidden Components

2.3.6 DOMAIN ExPERT ANALYSIS I

After each subsystem is analyzed and a set of candidate objects are identified. a domain expert should
examine the set of objects. The questions that the expert must ask about each candidate object are:

* Does the set of interface components form a logically-related portion of the implementation's
behavior?

15

2. The Conceptual Method

"* Are the interface components likely to change together?

"* Are the candidate objects of appropriate size (measured in total components)'?

If the answers to these questions indicate that changes need to be made, then these changes should
be well documented. The object-based desigrn formed by this activity is simply a recommendation
based on the static interactions between the functionally-oriented components. Expert experience, or-
ganizational standards, or even strong preference may call for altering the design. Be sure that all
changes are documented and carefully considered.

If changes need to be made, because some of the components of a candidate object do not belong with
the other components of the object, then the following actions can be taken:

" Determine if new library components should exist. Since objects are primarily constructed
based on commonality between component dependency sets, review the dependency sets of
the components in conflict within the object. It may be necessary to make some of the compo-
nents in these dependency sets into library components so that they are not included in the
formation of objects. Any time a new library component is identified, the activities of this
method have to be restarted from the beginning.

" Make the problem components into new one-component objects. If there are no new library
components that can be identified, then simply remove any problem components from the
candidate objects in which the conflict occurred and make them into new one-component ob-
jects. After removing any component from an object, review each of the hidden components
of the candidate object from which the component was removed. Some of the hidden compo-
nents may no longer qualify as hidden components. They were originally made into hidden
components because they were only called or accessed by other components within the candi-
date object. However, after removing any problem component, this condition may no longer
be true. If a hidden component must also be removed, the particular hidden component is re-
moved from the candidate object and a new one-component object is formed around this pre-
viouslv hidden component. After removing any hidden component from a candidate object,
you need to reconsider all other hidden components in the candidate object since part of their
context may have just been removed. Unlike identifying new library components above, form-
ing these new one-component objects does not warrant restarting the entire method. After the
domain expert is satisfied with these changes, move on to the Integrating Objects activity in
Section 2.4.

2.4 INTEGRATING OBJECTS

Integrating Objects, the final activity, removes all of the subsystem boundaries imposed by the
functionally-oriented implementation. This activity integrates subsystems, one-at-a-time, into a com-
pound subsystem. All integration is nondestructive, however. As each subsystem is integrated, copies
should be made of the subsystems as they are integrated, thus preserving the pre-integration candidate
objects and forming a new set of post-integration objects. In this way, a domain expert can look at the
object definitions at both the system and the subsystem levels to determine which seem more ap-
propriate for the given implementation. Subsystems are integrated in order of decreasing complexity:
the most complex subsystem is the one with the greatest number of components (both interface and
hidden). The most complex subsystem will serve as the initial compound subsystem. All other
subsystems will be integrated into this compound subsystem.

16

2. The Conceptual Method

As each individual subsystem is integrated into the compound subsystem, the context and dependency
information for all components in the subsystems are integrated, as illustrated in Figure 8 .Compo-
nent integration potentially increases the context and dependency sets for the components of the ob-
jects being integrated. After this component information is integrated, then the objects are integrated
which attempts to merge any of the existing candidate objects into single objects. These two steps are
repeated as each subsystem is integrated into the compound subsystem. A review by a domain expert
completes this activity.

Integrated Doxtain

Objects Experts

Objects with
Component Merged Component
Integration 31 Info

Unintegrated
Objects Object Integrated

Integration 32 Objects

Integrated
Key: Domain Objects

Control Expert

Analysis 33

Input -* Activity -- +Output

Figure 8. Integrating Objects Activity

2.4.1 COMPONENT INTEGRATION

As each subsystem is integrated into the compound subsystem, the components (both interface and
hidden) of the subsystem and the compound subsystem are initially reviewed to determine if integra-
tion will cause changes to the interface or hidden components of either subsystem. This subactivitN
integrates the context and dependency information for each component of the objects. and then
searches to see if this updated information causes any hidden components to become interface
components.

2.4.1.1 Integrating the Component Information

The partitioning of the original functionally-oriented implementation into subsystems most likely
causes the complete definition of some components to be incomplete. This is because some compo-
nents may be defined in one subsystem and accessed by another subsystem. In this situation, the com-
plete context and dependency set for the component will not be completely known until both
subsystems are reviewed together (i.e., component integration).

When you integrate a subsystem into the compound subsystem, all common components must have
their component information integrated. The integration of the component's context and dependency
sets is simply the union of each of the separate sets. Figure 9 illustrates the integration for a compo-
nent, C1, that is present in two separate subsystems. In Subsystem 1, C1 is defincd, and in the com-
pound subsystem, C1 is called by B and C and has no dependency set. Integrating Subsystem I into
the compound subsystem causes Cl's context and dependency sets to become integrated. The revised

17

2. The Conceptual Method

information (i.e., the integrated component information) is updated in Subsystem 1 and the
compound subsystem.

Integrate

Revised
Information

-- -- -- -- -- -- -- -- - -- -- -- -- -- - ----------------- I

Subsystem 1 Compound Subsystem

Component C

C1 ~C C1Cmpnn
C1 I ICmoenc

c-set(Cl) = JA) c-set(Cl) = {B. C1 c-set(C1) = {A. B, Q}
d-set(Cl) = {X. Y) d-set(C1) -- f{} d-set(C1) = {X, Y}

Figure 9. Component Integration Example

2.4.1.2 Making Hidden Components into Interface Components

After the component information is integrated, some of the hidden components may no longer qualifý,

as bidden components. They, were originally made into hidden components because they were only
called or accessed by other components within a single candidate object. However, after integration,
this condition may no longer be true. In this situation, the particular hidden component is removed
from the candidate object and a new one-component object is formed around the previously hidden
component. After removing any hidden component from a candidate object, you need to reconsider
all other hidden components in the candidate object since part of their context miay have just been
removed.

In Figure 9, component C1*s context set was expanded due to the integration of Subsystem 1 and the
compound subsystem. In the compound subsystem. this integration expanded Cl's context set from

MB CQ to 1A, B, C1. Therefore, if C1 is a hidden component in the resulting compound subsystem,
then you need to check to see if it should become an interface component instead. If C1 's context is
split between two separate objects within the compound subsystem (i.e., A is in one object and B and
C are in another). then C1 will not be able to remain as a hidden object since it is needed by two differ-
ent objects. You will need to remove it from its current object and place it into a one-component object
with C1 as the interface component.

2.4.2 BJCT INTEGRATION

After completing the component integration, integrate the objects of the subsystems. This object
integration moves all objects from the subsystem being integrated into the compound subsystem. It
then determines whether any' of the objects can be merged with other objects of the compound

itI

2. The Conceptual Method

subsystem. This activity initially integrates objects, and then it applies several checks to determine the
resulting legality of the hidden and visible components of the integrated compound subsystem. Any
discrepancies are corrected.

2.4.2.1 Integrating the Candidate Object Information

This subactivity consists of two tests for integrating objects within the compound subsystem: the
Distributed Object Test and the Aggregate Object Test. The Distributed Object Test attempts to locate
objects whose definition was partially distributed across two of the integrated subsystems. It examines
the interface components of both objects and their dependency sets to determine if they can actually
form a logically related object. The Aggregate Object Test checks the component sets of rvo objects
to determine if one is a subset of the other. If so, it is likely that the two objecLt can be merged into
a single object.

" Distributed Object Test. The Distributed Object Test operates on the dependency sets of any pair
of objects in the compound subsystem, say COI and C02, and is described as:

d-set(COl) C d-set(C02)

This test states that if the dependency set of any candidate object is a subset of any other
candidate object's dependency set, then the test succeeds.

If this test indicates that candidate objects should be merged into a new candidate object, then
perform the following steps:

1. Merge the components (both interface and hidden) from the two candidate
objects into the new candidate object.

2. Set the dependency set of the newly merged candidate object to the intersection of
the dependency sets of the two merged objects, i.e., d-set(new-object)
d-set(CO1) n d-set(CO2).

"• Aggregate Object Test. The Aggregate Object Test operates on the set of components (both
interface and hidden) of objects in the compound subsystem. say CO1 and C02. and is de-
scribed as:

component-set(COl) C component-set(C02)

This test states that if the components of any candidate object are a subset of any other
candidate object's components, then the test succeeds. This essentially means that the one ob-
ject is completely subsumed within the second object.

If this test indicates that candidate objects should be merged into a new candidate object, then
perform the following steps:

1. Merge the components (both interface and hidden) from the two candidate
objects into the new candidate object. The redundant components should only
appear once in the merged candidate object.

2. Set the dependency set of the newly merged candidate object to the
intersection of the dependency sets of the two merged objects. i.e..
d-set(new-object) = d-set(CO1) n d-set(CO2).

19

2. The Conceptual Method

After these tests have been applied, the following checks must be performed to ensure that a legal set
of objects results from the object integration:

1. Check each of the interface components of the merged candidate object to determine if they
can still remain in the candidate object with the object's new dependency set. This check is
identical to the Adding Components to Objects activity in Section 2.3.2 for placing compo-
nents into the interface of a candidate object and consists of two tests. The first test (adapted
for this integration step) states that if the dependency set of an interface component I is a suu-
set of the dependency set of the candidate object CO, i.e., d-set(I) C d-set(CO), then the inter-
face can remain in the candidate object. Also, if this first test fails, then obtain the intersection
of the dependency sets of the candidate object and the interface component. If the size of this
intersection is greater than or equal to the size of the shorter of the two dependency sets multi-
plied by some thresholding factor, i.e., I d-set(CO) n d-set(I) 1 Ž (min (I d-set(CO)j,
Id-set(I) I) * threshold, then the interface can remain in the candidate object.

If any of the interface components fail this check, then the interface component must be
removed from the new candidate object and placed into a new one-component object.

2. If any interface components of a candidate object were removed because of failing the above
dependency set check, then the hidden components of the candidate object must also be recon-
sidered. One of these hidden components may have contained the removed interface compo-
nent in its context set (i.e., the interface component called or accessed the hidden component).
In this situation, the hidden component is removed from the candidate object and a new one-
component object is formed around this previously hidden component. After removing any
hidden component from a candidate object, you need to reconsider all other hidden
components in the candidate object since part of their context may have just been removed.

3. Duplicate components also need to be resolved. As objects from different subsystems are
integrated, there is the possibility that a component will be duplicated (i.e., a component might
have been an interface component in one candidate object while being a hidden component
in another candidate object). Since the context and dependency information for the duplicate
components are identical (because of Section 2.4.1.1 on integrating component information),
one of the components can be discarded. The following rules apply to removing duplicate
components:

a. If a component is present in a one-component object and also present in another
multi-component object, then discard the one-component object and its contents.

b. If a component is present in two one-component objects, then discard one of the
one-component objects and its contents.

c. If a component is in the interface of one object and is hidden in another object, then
discard the hidden component.

d. If a component is hidden in two objects, then make one of the hidden components into
a new one-component object (removing it from its containing object) and discard the
other hidden component. When any new one-component object is formed due to this
rule, reapply rule 2 above.

20

2. The Conceptual Method

2.4.2.2 Reexamining One-Component Objects for Hidden Components

This subactivitv revisits each one-component object in the integrated compound subsystem to
determine if any interface components of these objects can become hidden components in any other
object. This subactivity consists of a single test that is applied to every one-component object. For each
one-component object (which we will refer to C) considered in conjunction with each known candidate
object (referred to as CO), the following test is applied:

c-set(C) C ((set of all interface components of a given candidate object, CO) U
(set of all hidden components of a given candidate object, CO))

This subactivity is identical to the Find Hidden Components activity in Section 2.3.5. The basic
premise is that if a one-component object's interface component is only accessed by the components
(both interface and hidden) of a single candidate object, then the given component can become a hid-
den component of that candidate object. The component is made into a hidden component of the can-
didate object with which the test succeeded, and the one-component object is discarded since it is no
longer needed. This subactivity is repetitive since placing any component into an candidate object (as
a hidden component) increases the number of components contained in that candidate object, thus,
increasing the chances for other components to become hidden components of this same object.

2.4.3 DOMAIN EXPERT ANALYSIS 2

After each subsystem is integrated into the compound subsystem. a domain expert should examine
the set of objects. The questions that the expert must ask about each candidate object are:

"* Does the set of interface components form a logically-related portion of the implementation's
behavior?

"* Are the interface components likely to change together?

"• Are the candidate objects of appropriate size (measured in total components)?

If the answers to these questions indicate that changes need to be made, then these changes should
be well documented. The object-based design formed by this activity is simply a recommendation
based on the static interactions between the functionally-oriented components. Expert experience, or-
ganizational standards, or even strong preference may call for altering the objects. Be sure that all
changes are documented and are carefully considered.

If changes need to be made, because some of the components of a candidate object do not belong with
the other components of the object, then the following actions can be taken:

" Determine if new library components should exist. Since objects are primarily constructed based
on commonality between component dependency sets, review the dependency sets of the com-
ponents in conflict within the object. It may be necessary to make some of the components in
these dependency sets into library components so that they are not included in the formation
of objects. Any time a new library component is identified, the activities of this method have
to be restarted from the beginning.

"* Make the problem components into new one-component objects. If there are no new library
components that can be identified, then simply remove any problem components from the

21

2. The Conceptual Method

candidate objects in which the conflict occurred and make them into new one-component
objects. After removing any component from an object, review each of the hidden components
of the candidate object from which the component was removed. Some of the hidden compo-
nents may no longer qualify as hidden components. They were originally made into hidden
components because they were only called or accessed by other components within the candi-
date object. However, after removing any problem component, this condition may no . ger
be true. If a hidden component must also be removed, the particular hidden component is re-
moved from the candidate object and a new one-component object is formed around this pre-
viously hidden component. After removing any hidden component from a candidate object,
you need to reconsider all other hidden components in the candidate object since part of their
context may have just been removed.

Unlike identifying new library components above, forming these new one-component objects
does not warrant restarting the entire method. After the domain expert is satisfied with these
changes, integration of additional subsystems can continue.

After the completion of all subsystem integration, the domain expert should review the final
integrated candidate objects against the non-integrated candidate objects produced in Section 2.3.
This review may cause the domain expert to reconsider the boundaries imposed by the original
functionally-oriented implementation.

2.5 USING THE RESULTS

This method identifies an object-based design as a set of candidate objects in both integrated and
unintegrated forms. These objects reflect the desirable object-based characteristics of encapsulation,
information hiding, and problem-space orientation. These characteristics should provide a basis for
addressing the reasons given in Section 1.3 regarding why there might be a need to reengineer
functionally-oriented implementations.

By providing well-defined interfaces and hidden information, you can easily implement these objects
in object-oriented languages or in languages that support (or enforce) information hiding. These
objects can also form the basis for libraries of reusable components.

Even though, in its current form, this method does not directly support the transformation of the
object-based design into particular languages or object-oriented paradigms, the documentation
provided by this method still provides an excellent basis for performing these transformations.

22

3. METHOD VALIDATION

The Consortium has validated this method on a pilot project with the SYSCON Corporation of
Williamsburg, Virginia. The pilot project applied this method to an implementation of an Automatic
Identification System, named SID. SID is a "smart card identification system" to control access to se-
cure buildings, rooms, and equipment. This system is composed of multiple subsystems, hundreds of
functions and data structures, and thousands of lines of code.

Aside from validating this method, the purpose for applying it to SYSCON's domain was to:

"* Improve the maintainability and adaptability of the system.

"• Produce a library of reusable software objects for future development.

The SID application was written in C, and the intent was to use this method to help transform the
system to a C++ implementation.

This method was applied three separate times during the pilot project. The first application was
performed manually to a subset of the SID application. No automation was involved. On the basis of
this first application of the process, certain activities were refined (i.e., altered, added, deleted) to
more accurately address the SYSCON application. The second application was performed on the en-
tire system with some automation (see Section 4). The result was similar to the first application. New
activities were added, some old ones were refined, and tailoring parameters were slightly altered. No
activities were removed this time, however. The third application resulted in no alteration to the
method and was done with automated assistance.

SYSCON's response to the result of applying the method has been very favorable. The objects defined
capture related functions and data that can be reused in future development. The size of the objects
are large enough so as to increase the productivity of reusing them over simply reusing their compo-
nent parts. Also, the savings in man-hours by having automated support over having to evaluate the
code "by hand" made the transformation to using this method reasonably cost-effective and salable
to management.

Further validation of this method is necessary to identify whether this method is applicable to systems
differing from SYSCON's. Tailoring occurred between applications of this method to obtain the de-
sired results for SYSCON. Further experimentation is needed to identify exactly how tailoring is to
be accomplished. The method can be applied, in its current form, to any system. However, it is likely
that project-specific or company-specific tailoring will be required. Until further exploration occurs,
the user will have to perform this tailoring. By altering this method, the resulting objects may improve
over those created from using this method verbatim. The basic premises of this method, though,
should hold true regardless of the tailoring performed.

23

3. Method Wlidation

This page intentionally left blank.

24

4. METHOD SUPPORT

This method is mechanical and tedious in nature. As such, the Consortium recommends using some
form of automated support to perform the activities of the method. The extracting context and depen-
dence portion of this method can likely be supported by commercial-off-the-shelf (COTS) products
designed to extract the necessary information from implementations written in particular program-
ming languages. Automated support for the rest of this method is currently not supported by any
COTS products. However, the mechanical nature of the activities present in this method lends it to
greatly benefitting from automated support. The method, as presented in this report, was practiced
with SYSCON in manual and automated form. The manual form was tedious, but doable. Once auto-
mated support was present, however, productivity was greatly enhanced and error rates dramatically
decreased.

During the pilot project between the Consortium and the SYSCON Corporation, this method was
supported by several forms of automation. The static analysis of the C code was supported by a PC
product named CDOC. CDOC extracted the calls and called-by relationships between functions and
the access information for data structures. The rest of this method was supported by a rudimentary
prototype called C2C÷ ÷. This C2C÷ + prototype was written in Common LISP and utilized the Com-
mon LISP Object System (CLOS) to manage the objects created by this method. The C2C+ + proto-
type consisted of approximately 4700 lines of Common LISP code and was written to execute on a
Sun 4 workstation (however, the prototype should be able to run on any platform that supplies a full
Common LISP implementation).

The C2C+÷ prototype primarily supports the activities and checks of the conceptual method.
Candidate objects are created, analyzed, and removed based on the application of these activities and
checks. The prototype, however, does not support the expert analysis or transforming the candidate
objects to C+ ÷. In its current form, any alterations desired by the domain expert to the candidate ob-
jects must be affected through Common LISP programming and CLOS interactions, the prototype
does not currently handle making these changes to the candidate object base. The output of this proto-
type is a listing describing both integrated and non-integrated candidate objects and each of the
components contained in these candidate objects.

25

4. Method Support

This page intentionally left blank.

26

5. CONCLUSIONS

5.1 FINAL CONCLUSIONS

This method shows good potential for extracting an object-based design from functionally-oriented
implementations. This method analyzes existing code and identifies a set of objects that are behavior-
ally-equivalent to the original functionally-oriented implementation. The resulting objects are a
cohesive grouping of the original functions along with the data that those functions manipulate.

This method also appears to address the conventional motivations for reengineering existing systems.
It aids the user in creating objects that exhibit proper encapsulation and information hiding character-
istics using the information extracted from the functionally-oriented implementation. This method
helps the user move from a functionally-oriented implementation to one that is object-based, and it
provides a mechanical way of analyzing existing code to obtain this object-based viewpoint of the
original implementation.

This method was validated on a pilot project with the SYSCON Corporation. The feedback from
SYSCON has been very positive. SYSCON was able to help the Consortium in refining the method.

Finally, this method is preliminary and needs further exploration. This report documents the
method's present state (as practiced on the SYSCON pilot project) so that interested technologists
and methodologists can continue the exploration into transforming functionally-oriented
implementations into object-based implementations.

5.2 FUTURE WORK

This method is preliminary. This section enumerates some of the future work that could make it more
useful. The following are a list of some of these suggestions:

* Exploration into tailoring this method for a particular project or company. Currently, this
tailoring is not well understood. Some activities are currently tailorable, as in the case with the
thresholding values used in the activities. However, tailoring beyond these thresholds will
require further exploration.

* Autorfiated support would be very beneficial. Currently the activities and checks are only
automated in prototype form. No support is provided for the expert analyses or the trans-
formation to an object-oriented programming language. Automation. in the form of
commercialization, would greatly enhance the usability of this method.

* Currently, lists of components and objects are ordered based on "complexity." This
complexity is defined as components with the greatest number of dependencies or objects with

27

5. Conclusions

the greatest number of components. It is unclear if there are other ordering mechanisms that
would benefit this method (i.e., new ways of selecting the initial candidate object within a
subsystem). This could use some exploration.

This method currently only operates on function-to-function and function-to-data
interactions within the functionally-oriented implementation. However, future exploration
could determine whether similar data-to-data interactions (e.g.. the typedef statement in the
C language) could be added as an additional basis for object formation.

28

GLOSSARY

C-set A context set for a component.

Candidate objects Objects created by this method for subsequent
review and approvil by domain experts.

Cohesiveness The degree to which the tasks performed by a single
program module are functionally related.
(IEEE 1983)

Commonality Common calls or data accesses between two
components.

Components Functional and data components from the original
functionally-oriented implementation.

Compound subsystem A object formed by the integration of the original
functionally-oriented subsystem objects.

Context For a given component, the set of all components that
call or access it. Denoted as a c-set (component).

D-set A dependency set for a component.

Data component Any form of state or data storage in a system.
Examples include variables, records, and arrays.

Data elements The data structures (i.e., variables, records) and
state variables maintained by a program.

Dependency For a given component, the set of all functions or data
components that it calls or accesses. Denoted as a
d-set (component).

Encapsulation The technique of isolating a system function within a
module and providing a precise specification for the
module. See also information hiding. (IEEE 1983)

Functional components A unit of executable code in a system. Typical
examples include functions and procedures.

29

Glossary

Functionally-oriented A system whose "boundaries of modules have been
defined in a way that depends on the decomposition,
which in turn depends on the functional charactc.-is-
tics of the specific application." (Graham 1991)

Functions Code that is invoked by a calling statement.
Functions include procedures, functions, and
subroutines in programs.

Hidden component A component assigned to a candidate object, but is
not included in the object's interface. It is a
non-exported component of the object.

Information hiding The technique of encapsulating software design
decisions in modules in such a way that the module's
interfaces reveal as little as possible about the mod-
ule's inner workings; thus, each module is a "black
box" to the other modules in the system. The disci-
pline of information hiding forbids the use of in-
formation about a module that is not in the module's
interface specification. (IEEE 1983)

Integration The formation of candidate components based on
removing all of the subsystem boundaries taken from
the original functionally-oriented implementation.
Integration takes an overall system view to the
formation of candidate objects.

Interface component A component assigned to a candidate object, and is
included in the object's interface. It is an exported
component of the object.

Library components Library components are functions within the
functionally-oriented implementation that are at too
low of a level to warrant being included in the forma-
tion of objects. Library components are denoted as
such to prevent them from becoming the basis of the
formation of objects.

Object Cohesive, logically-related groups of functions and
data that is manipulated by these functions. Objects
contain an interface and its hidden information. The
interface reveals those aspects of the object that need
to be known outside the object. The hidden informa-
tion include any data that the interface functions ma-
nipulate along with any internally hidden functions
that do not need to be exported.

30

Glossary

Object-based design A description of a set of suggested objects and a
structure (i.e., interactions) between those objects
that is behaviorally-equivalent to the original imple-
mentation. The resulting dscign focuses on encap-
sulation, information hiding, and problem-space
orientation.

Reengineering The process of extracting valuable information from
code to better understand the code or tc help to
improve the code.

Subsystem A partitioning of a system. Subsystems can be formed
based on logical groupings of related software and
hardware. Subsystems can also be formed based on
managerial work assignments.

Threshold A factor used to control the effect of activities.

Unallocated components Components that have not yet been assigned to any
particular object.

31

Glossary

This page intentionally left blank.

32

REFERENCES

Graham, Ian Object Oriented Methods. Reading, Massachusetts:
1991 Addison-Wesley Publishing Company.

IEEE IEEE Standard Glossary of Software Engineering Terminology
1983 New York, New York: The Institute of Electrical and Electronics

Engineers, Inc.

33

References

This page intentionally left blank.

34

BIBLIOGRAPHY

Pole, Thomas. Transitioning to the Object Oriented Software Development Paradigm Using C2C+ +:
Recovering the Implicit Reusable Objects from a Non-Object Oriented Implementation, Internal Working
Paper. Herndon, Virginia: Software Productivity Consortium, May 1992.

35

Bibliography

This page intenlionally left blank.

36

PC -R

c cc
ele

w- c

EE ~ Cr~X

PC -2 C :a

o0 -c

iC

CF c

acc
u~ C .7El ~ - o >~~m

= -c_

C) ,- -a

6- 0

C-C

00 g. 0001300 .5
OU cc CE

Ec .~ cc
SC E

CE cc

a-. tF 0 0 D 1

PRODUCT USE SURVEY

NAME PHONE__

TITLE MAIL STOP

-DIVISION

"COMPANY

ADDRESS

CITY_ _STATE ZIP CODE

FOLD HERE

We are working continually to improve

GIVE US YOUR OPINION ABOUT our products. After you have reviewed

OUR PRODUCT. or used our product, give us your
opinion by completing the short survey

Please complete the survey form above above and on the reverse side. It should
and on the reverse side. take you only a couple of minutes. We

will send you the new Software

FOLD, TAPE, AND MAIL. Productivity Consortium poster in
return.

Thank you,

The Software Productivity Consortium

--- -------------------------- FOLD HERE

1 1NECESSARY
11111IF MAILED

INTHEUNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 7702 HERNDON VA

POSTAGE WILL BE PAID BY ADDRESSEE

TECHNOLOGY TRANSFER CLEARINGHOUSE
SOFTWARE PRODUCTIVITY CONSORTIUM, INC.
SPC BUILDING
2214 ROCK HILL RD
HERNDON VA 22070-9858

lollh11,hh1h111 ,,,Ih. hhIII h.11 11111.hhh 1hhh,

